Skip to content
Nanotubes.

Advanced Materials

A highly integrated experimental and multiscale modeling/simulation approach is utilized to engineer a broad range of materials with a desired micro- or nano-structure. Specific areas of interest include dynamics of complex fluids, such as polymeric and biological fluids, fiber suspensions, colloidal systems, as well as synthesis of functional nanoparticles and thin films. An exclusive relationship with ORNL has been established, which allows use of massively parallel supercomputers, access to the Spallation Neutron Source and a wide array of other state-of-the-art materials characterization facilities to accomplish research objectives.

Current Faculty Research

Extended Metallic Catalyst Surfaces Via Templated Vapor Deposition

> Tom Zawodzinski with Alex Papandrew

Extended metal nanostructures are active, durable alternatives to conventional carbon-supported electrocatalyst architectures for oxygen reduction in energy conversion devices. Hollow tubular nanostructures are of particular interest, due to the prospect of accessing the inner metallic surface, which is not possible in a nanowire or a supported composite nanostructure.

Modified metalorganic chemical vapor deposition methods were used to synthesize the platinum nanotubes depicted in sacrificial aluminum oxide templates. The resulting catalysts are five times more active than carbon-supported Pt for oxygen reduction, potentially enabling next-generation vehicular technologies based on sustainable fuels.

Faculty

» Brian Edwards
Associate Head, Professor

» Dr. Zhanhu Guo
Associate Professor

» Bamin Khomami
Granger and Beaman Distinguished University Professor, Department Head

» Michael Kilbey
Professor

» Siris Laursen
Assistant Professor

» Stephen Paddison
Gibson Endowed Chair in Engineering

» Joshua Sangoro
Assistant Professor

» Tom Zawodzinski
UT-ORNL Governor’s Chair for Electrical Energy Conversion and Storage


The flagship campus of the University of Tennessee System and partner in the Tennessee Transfer Pathway.

View our Privacy Policy.