Skip to content Skip to main navigation Report an accessibility issue

Computational Materials Science and Engineering

Science formula and math equation abstract background. concept of machine learning and artificial intelligence.


Computational Materials Science and Engineering

Materials science and engineering has steadily moved toward using computational methods for materials discovery and for acceleration of materials development. To realize these objectives, theory and simulation are investigated at different length and time scales, i.e., electronic structure to macroscopic size, and femtoseconds to days.

The overarching theme of research in this area is multiscale modeling and simulation of a host of materials including polymer and polymer matrix composites. Notable efforts include electronic structure calculations, equilibrium and nonequilibrium molecular dynamics, phase field methods, Monte Carlo, Dissipative Particle Dynamics, Brownian Dynamics, and micromechanics using finite element/volume and/or spectral methods. Topics include relation between chemical composition and single molecule dynamics and macroscopic behavior of polymeric systems (Edwards, Doxastakis, Khomami), new computational methods (Edwards, Doxastakis, Khomami), machine learning (Doxastakis, Khomami), polymer-based electrolytes (Paddison), energy storage and conversion (Paddison), bio-membranes (Abel), biopolymers (Abel, Doxastakis, Khomami), and biohybrid and biomimetic materials (Abel, Khomami).



Recent News

Building Bridges to the Future of Modeling

Manolis Doxastakis’ research in multiscale computational modeling is building bridges between what exists and what’s possible.

Read more

Paddison Appointed RSC Fellow

Stephen J. Paddison, the Gibson Endowed Chair in Engineering, was recently appointed Fellow of the Royal Society of Chemistry.

Read more