Computational Materials Science and Engineering
Materials science and engineering has steadily moved toward using computational methods for materials discovery and for acceleration of materials development. To realize these objectives, theory and simulation are investigated at different length and time scales, i.e., electronic structure to macroscopic size, and femtoseconds to days.
The overarching theme of research in this area is multiscale modeling and simulation of a host of materials including polymer and polymer matrix composites. Notable efforts include electronic structure calculations, equilibrium and nonequilibrium molecular dynamics, phase field methods, Monte Carlo, Dissipative Particle Dynamics, Brownian Dynamics, and micromechanics using finite element/volume and/or spectral methods. Topics include relation between chemical composition and single molecule dynamics and macroscopic behavior of polymeric systems, new computational methods, machine learning, polymer-based electrolytes, energy storage and conversion, bio-membranes, biopolymers, and biohybrid and biomimetic materials.
Faculty Researchers |
---|
Steven Abel |
Manolis Doxastakis |
Brian Edwards |
Bamin Khomami |
Stephen Paddison |